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This paper concerns the conversion of momentum and energy from evanescent 
surface waves into sound. Exact results are dbtained from surface waves of specified 
form on a confined region of an otherwise rigid plane surface. The model chosen is 
simple enough for exact analysis while approximating some of what we believe to 
be significant aspects of sound generation by vibrating surface panels. 

We find that the evanescent wave approaching an edge gives up all of its energy 
into sound, a sound which is beamed miinly parallel to the direction of the 
surface-wave phase velocity. The surface remains energetically inactive, but exerts 
a force on the fluid in the opposite direction to the incoming wave. This force is 
balanced by a nonlinear mean pressure gradient in the field of the evanescent wave, 
and by momentum in the sound field. 

Sound is also produced when a similar evanescent wave emerges from an edge. The 
surface has then to provide the necessary energy for both waves. These waves induce 
a mean axial force at the boundary which forces the fluid in the direction of the 
receding evanescent wave. 

A similar wave travelling across a finite panel in the otherwise rigid plane surface 
is observed to have some characteristics of the previous two cmes, but there is no 
axial force arising from the mean pressure gradient. 

These results are applied to the problem of a semi-infinite tensioned membrane, 
and the energy radiation under light fluid loading is determined for the case of high 
and low free membrane wave speeds. 

1. Introduction 
Surface waves with subsonic phase velocity are evanescent and only weakly 

affected by the fluid’s compressibility. But any interruption of the wave system 
causes some of the surface wave’s energy to be scattered into sound, the degree of 
the conversion process obviously depending on the precise nature of the scatterer. 
One extreme of the process involves a complete energy conversion. Taylor (1942) 
showed that impulsively arrested slow flows must evolve into sound waves. Hill 
(1986) has extended those ideas to an impulsively started evanescent wave, again 
demonstrating an equipartition of wave energy. In  this paper we examine the 
influence of a different kind of abrupt change, imposing the discontinuity on the 
spacial rather than the temporal extent of the evanescent field. We find a similar 
equipartition of energy between the hydrodynamic and acoustic fields. The interest 
in the problem arises because it throws light on the mechanism by which bounded 
surface waves generate sound. 

Details of wave reflection and scattering at  the edge of a vibrating panel are very 
involved even for surfaces with ideally specified flexural characteristics and 
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FIGURE 1. Diagram representing the three caws studied. 

unrealistically simple edge constraints. The flexural surface motion driven by the 
intricate edge-scattered pressure field is itself very intricate. Even the ideal problems 
are hard to analyse because of the need to take account of this mutual cause and 
effect. And even when the solutions to the few tractable cases are available it is hardly 
ever straightforward to determine the energy and momentum balance which 
characterize their acoustic and drag-producing properties. What we present in this 
paper is a different kind of simplification in which we avoid the issue of how the 
surface wave is modified by the surface pressure. Then we have a much easier problem 
whose solution can be interrogated to a greater depth than in the conventional case 
in which the surface dynamical properties are specified. In fact the solution to the 
exact problem is almost trivially easy to write down. Even so it  is still quite hard 
to display that solution in sufficient detail to illustrate clearly how sound is generated 
from a surface wave, where the energy comes from and what force is implied by the 
scattering process. It is this illustration and the interpretation of the solution that 
we regard as novel and potentially instructive to others. 

We examine three particular cases where an infinite plane surface, bounded on one 
side by an inviscid fluid, supports harmonic waves of specified amplitude. Some parts 
of the boundary plane are in prescribed motion; elsewhere the surface is undisturbed. 
The junction between the moving and still parts is the cause of the wave scattering 
whose properties we determine in detail. 

Our first problem concerns a semi-infinite, subsonic, plane wave travelling towards 
an edge beyond which the surface is flat. In the second example the wave is driven 
away from the edge, while the third concerns waves in a strip of finite width (see 
figure 1).  

In each case we show how the evanescent wave attached to the surface is coupled 
to cylindrical outwardly travelling sound waves which are centred on each edge. 

In  studying the energy and momentum flow through the system, care is taken that 
these quantities are adequately defined. Mohring (1982) has outlined the various 
approaches possible, and that taken here acknowledges the nonlinearity of the full 
equations of motion. 

We find that when an evanescent wave of fixed amplitude approaches an edge the 
energy travelling with the wave is transformed by the edge into sound. The surface 
at large plays a purely passive role in scattering the evanescent disturbance. The 
surface does no work on the fluid, nor is any work done by the fluid on it. We find 
that there is a mean form drag on the surface. The surface in turn exerts a mean force 
on the fluid, a force that acts in the opposite direction to the incoming evanescent 
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wave. We show that a combination of the flow of momentum through the system, 
and second-order components of the mean pressure, balance this surface force and 
maintain the equilibrium of the steady state. 

For the second case where waves move away from the edge a totally different 
energy balance is struck despite the pressure field having a similar form. In  this case 
the surface is active and gives off energy at a rate sufficient to maintain both the 
evanescent and the sound fields. In  contrast to the first case, there is now a force 
acting at  the surface on the fluid in the direction that the evanescent wave is 
travelling. 

Finally, the third case of a wave between two baffles combines both of these effects; 
there is a ‘starting’ and a ‘stopping’ edge. The wavy region acts as a source radiating 
sound to infinity, its efficiency depending upon the surface wave speed, and the 
number of wavelengths present in the strip. As the strip is widened, the wave field 
becomes a superposition of the two previous cases, and twice the acoustic energy is 
emitted corresponding to the presence of two remotely coupled edges. 

The drag on the surface behaves in a similar manner. As the width of the strip 
becomes large the drag limits to the sum of that due to isolated ‘starting’ and 
‘ stopping ’ edges. 

In our final section, these results are used to determine characteristics of a 
semi-infinite fluid-loaded membrane. These agree with those calculated by Davies 
(1974), who dealt with a tensioned membrane in the light-fluid-loading case using a 
Wienel-Hopf technique. We give also an estimate of the behaviour when the 
membrane free wave speed is very high, in which case the conversion of near-field 
energy into sound is much more efficient. 

2. A surface wave approaching an edge 
2.1. The pressure field 

The outgoing linear pressure field produced by the motion of an infinite plane 
boundary is given by 

as shown by Hill (1986). For this problem the mean position of the surface is taken 
to lie in the plane y = 0, with the fluid occupying the region y > 0. 

In  order to describe a wave incident on an edge a normal velocity, 

is prescribed. Thus 

Integration over the zf variable produces a Hankel function, so that 

(2.4) 
0 

p ( x , t )  = +povwJ-_ dx’. 

a result that might have been the alternative starting point of this analysis using the 
two-dimensional Green function of the Helmholtz equation. 
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If the integration range in (2.4) were infinite, then the pressure field would be the 
evanescent wave 

i ei(wt-kz) e-ky(l-mP): E(x ,  t )  = po wc 
(1 -m2): 

where m = w/kc .  Equation (2.4) can be expressed as 

p ( x ,  t )  = H (  - z) {E(x ,  t )  ++po vwC(x) eiwt} + H(z)+po wwC(x) eiwt, (2.6) 

where 

I n  order to  find the structure of C that supplements the evanescent field, the Hankel 
function is expanded using the ' Summation Theorem ' stated in Gradshteyn & Ryzhik 
(1980, p. 979, 98.531). 

Then for z < 0 (similarly for z > 0) 

where r = (x2+y2);, and /3c [+R, n]. 
Noting that 

and that 

then for B E  [0, n] 
z = r cos8, y = r sine, (2.11) 

To find the far-field (large-r) approximation to  

p ( x ,  t )  = H (  - z) E(x ,  t )  + ;po wC(r, 0) eiWt (2.13) 

the asymptotic form for H?) can be substituted in (2.12): 

(2.14) 

Then 

The infinite series is convergent, and since (Gradshteyn & Ryzhik 1980, §1.447(2), 
P. 40) 

(2.16) 
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FIGURE 2. The directional dependence of the cylindrical wave amplitude in the 
form of a polar diagram. 

the far field of (2.13) gives 

where 

p ( x ,  t )  - H (  - 2 )  E(x ,  t )  +- A 1 i eio(t-r/c) ei+z 
r+m ri I - m  cose 

(2.17) 

(2.18) 

The evanescent surface wave travels in towards the edge where t is ev-dently 
‘scattered’ into a radially outgoing sound wave. There is a directional dependence 
in the amplitude in the form of a ‘Doppler’ factor 1/ (1  - m  cos 8). The waves are 
beamed most strongly in the forward direction as seen in figure 2. The beaming effect 
becomes more pronounced as the surface wave speed approaches that of sound. 

2.2. The energetics of the motion 
The question now arises as to how much energy is radiated from the surface. This 
can be calculated by evaluating the intensity I on the surface, where I is the product 
of the pressure and the normal velocity. 

The pressure on the surface for 2 < 0 is taken from (2.6), and after some 
rearrangement the time-averaged surface intensity is then 

- 
I = !j Re ( p ( x ,  0, t )  v,*) 

(2.19) dc {sinm’[Jo([)-cosm’[No([)}-~ 
E 

where [ = my, m‘ = l / m ,  and Jo and No are zero-order Bessel functions of the first 
and second kind. 

To find the total rate @ at which energy is radiated from the boundary requires 
that 7 be integrated with respect to 

Thus 
over the region x < 0. 

w e )  5 

d5 (2.20) 
a @ =  -4po 1 v2 c y  so ds JPm {sinm’[Jo([)-cosm’[No(~)}-. 

am 5 
Changing the order of integration and integrating with respect to 2 gives 

= 0 ,  (2.21) 

when m’ > 1 .  This means that there is no energy radiated through the boundary at 
y = 0. 

.. - 
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In the far field, however, the cylindrical sound wave 

A 1 i ,io(t-r/c) ei+t 

Pr = 2 i --m case 
has radial intensity 

(2.22) 

(2.23) 

The time-averaged rate at which energy flows away in the sound wave is therefore 

d0 
@, = I,de = - Jeff - 2p0c A2 I‘ (1-mcos8)2 

(2.24) 

most of it going downstream because of the beaming effect emphasized in figure 2. 

wave, and that its source is not in the surface y = 0. 
We have now ascertained that there is energy travelling outwards in the sound 

Now we consider the energy approaching from infinity in the evanescent wave 

The x-velocity of the fluid elements above the surface is 
E(x ,  t). 

(2.25) 

The.rate at which energy fluxes in towards the edge in the evanescent field dje ,  can 
thus be found by integrating over a vertical control surface. 

Consequently 
pov2 1 w - 1 *  

dje  = lo Re (Ev,*) dy = - 
4 k  (1-m2)f k ’  

(2.26) 

By noting that (2.24), the energy in the cylindrical wave, and (2.26), that incoming 
along the boundary y = 0 with the surface wave, are equal, the energy balance in 
the system is apparent. The energy in the evanescent wave approaching the edge is 
totally transferred into the cylindrical wave; the surface does no work. (In our model 
the surface is capable of producing or absorbing an infinite amount of energy.) 

2.3. Conservation of momentum 

Each unit area of a deformed surface as shown in figure 3 will experience a form drag 
d,  = p,(af/ax) in the positive x-direction. 

The total 2-direction force on the surface is 

To second order in k t0 ,  since 

(2.27) 

(2.28) 

(2.29) 
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d'j y = ~ ( x ,  r )  = E~ .+-k=) /p 
y = o  

FIQURE 3. The forces acting on the deformed surface. 

65 k V - = --v,+i-eiwt6(z), 
ax 0 w 

Taking the pressure p on the surface from (2.4) 

V 
Re (pv,*) --a@) Re (ip e-lUt). 

k 
2w 

(2.30) 

(2.31) 

(2.32) 

Integrating over x gives the total force Df on the surface due to the form drag as 

D,= -- Im a ( ~ )  Re (ip e-i"t) dz, 
20 -00 

00 

because 

from (2.21). Hence 

Re (pw,*) dz = @ = 0, 

D, = +po v2 I OD a(z) dz Izw {sin kq J ,  (: q )  - COB kqNo 
-00 

= i p o  v2 lom (sin kv J ,  (: 7) - cos kqNo 

(2.33) 

(2.34) 

The force which the surface exerts on the fluid evidently acts in the negative 
x-direction, i.e. against the incoming evanescent wave. Since the fluid is in steady 
periodic motion this mean force must be balanced by other forces; i.e. the pressure 
and Reynolds' stress acting on the distant control surface. 

First consider the cylindrical wave p, as defined by (2.22), and take the control 
surface to be a large semicircle centred on z = y = 0. The time-averaged force P, 
exerted on the contained fluid in the negative x-direction due to the departing wave is 

( p ,  cose+pv,,v,)rde, (2.35) 

where B = sin-l ([(z, t ) / r ) ,  and wZr is the x-component of the radial velocity v,. (The 
overbar denotes the time average of the real part of the quantity, or in the case of 
a product the time average of the product of the real parts.) 

Then 
~ + z )  coserde- (2.36) 
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FIGURE 4. The control surface, with the forces acting on the fluid inside from each part of the 
system. p,, is the force induced by the second-order pressure defined in (2.40). 

To second order in kE,, and as T + C O ,  since v, = p,/p,c, 

pov2  m2 p,  = po[onq coserde = - 
4k (1-m'):' 

(2.37) 

The force P, on the left-hand side of the volume due to the incoming evanescent 
wave E can now be found by considering the control surface to be vertical and 
positioned sufficiently far to the left that this wave is the only important disturbance. 
Then 

= ( E + z )  dy-[:z't) ( E + p v i )  dy. (2.38) 

The pressure field as obtained from (2.1) is correct up to order kE0, but on any 
distant control surface the pressure field will be required to second order. This 
second-order pressure p ,  is (King 1934) 

1 
P2 = Y P I  -+Po v:, 

2Po c 
(2.39) 

p,, and v,, being the first-order pressure and velocity respectively. 
For a plane sound wave, since there is an equipartition between the kinetic and 

potential energy, pZ = 0. This is not so however for the incoming evanescent wave 
represented by (2.5), in which 

- (2.40) p 2  = -;Po v2 e-zk?A-m')f 

The first integral of (2.38) can be evaluated as 

P& m2 
4k (l-m2))m7 

while, to second order, the second integral is 

v2 1 4 Re (E(s ,  0, t)  E(z, t ) * )  = 
2k (l-m2)i' 

(2.41) 

(2.42) 

(2.43) 

Then from (2.41), and (2.42) 
pov2 (2-m2) 

P, = - 
4k (1 -m2)f' 
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FIQURE 5. The components of the x-wise force on the control surface. 

This is a force acting to the right on the control volume due to the presence of the 
evanescent field, and of course all of the forces balance in the equilibrium condition 

P,-P,- D, = 0. (2.44) 

As we have seen, the non-zero mean value of the pressure perturbation is crucial 
to this balance. This is shown diagrammatically in figure (4), and quantitatively in 
figure 5. 

3. A surface wave moving away from an edge 

For this case we specify a normal velocity 
3.1. The pressure $field 

9 (3.1) = vH(z) eiW-kz) 

on y = 0. The pressure field that this implies can be found from the earlier results. 
By noting that v,+vk produces the evanescent field E ,  it is clear that vk produces 
the field p' = E - p ,  where p is (2.4). 

Then 

(3.2) 

and the asymptotic form is 

A 1 i .io(t-r/c) ei+nn. p' - H ( z )  E ( x ,  t ) - -  
& case (3.3) 
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3.2. The energetics of the motion 
When a surface wave moves away from an edge there is an evanescent wave in the 
fluid together with a cylindrical sound wave. They carry energy away, each at a rate 

as calculated in (2.24), and (2.26). 
It is clear that the transfer of energy which took place between these two waves 

in the previous situation no longer occurs. The surface must now do work on the fluid; 
a fact which can be verified by following a similar argument to that of 52.2. 

In this case 
w *  

4p0 k Jkx  
I = -1 v2 - (cos C;J,(m() + sin [No(m[) )  dc, (3.5) 

for x > 0. Then 

The rate at  which energy is radiated from the whole surface is then 

which is the sum of that radiated in the evanescent and sound waves. The surface 
supplies energy at  a sufficient rate to support both the sound and evanescent waves. 

3.3. Conservation of momentum 
As in $2.3 the forces within the system must balance, with the evanescent wave and 
the cylindrical wave still inducing forces of the same magnitude on the control 
volume, which is now chosen as shown in figure 6. The force which is associated with 
the evanescent wave now acts in the opposite direction, because the wave is leaving 
rather than entering the control volume. 

The drag on the surface still has to be evaluated directly using (3.2). The 
displacement is now 

V 
&z,t)  = -i-H(z) w ei@t-kz), (3.8) 

so that 

The drag, 

V 
v i  - i - eiWt 6(x). 35 k 

ax w w 
_ -  - -- 

= --@’+- k V Re (ip’ e-iwt) l x - o ,  
w 2w 

(3.9) 

(3.10) 

where @‘ is defined by (3.7), and p’ by (3.2). 
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pn = -HI -m*)D;+. 

-0; = pov' - 1 -K3-Zm')D;+- 
2& (1-m'p-D 

FIQURE 6. The control surface with the forces acting on the fluid inside from each part of the 
system. p ,  is the force induced by the second-order pressure defined in (2.40). 

0 0.2 0.4 0.6 0.8 1 .o 
m 

FIQURE 7. The components of the x-wise force on the control surface. 

Then 

V - Re (ip' e-iot) Iz-o = -+po wz 
2w -W 

{sin kqJo (: q )  - cos kvNo 

= 0, (3.11) 

giving (3.12) 

This force exerted by the surface on the fluid acts in the positive 2-direction, i.e. 

The balance 
it acts in the direction of the departing evanescent wave. 

P,+P,+D; = 0, (3.13) 

is qualitatively shown in figure 6, and quantitatively in figure 7 .  



112 J .  E.  Ffowcs Williams and D .  C. Hill 

FIGURE 8. The coordinate system for equation (4.3). 

4. A surface wave crossing a strip 
4.1. The pressure Jield 

Now we consider the situation where the surface motion is confined to the region 
--a < 2 < 0, where the normal velocity vg is specified by 

vg = w(H( -z)-H( -2-a)) ei(wt-kz). (4.1) 

The response is expressible as a superposition of the two fields already considered. 
We find that the pressure field p" due to (4.1) is 

the asymptotic form being 

A 1 i ,iw(t-r/c) eiix p" N (H( - -2 ) -H( - z -a ) )p , (x , t )+ -  
ri 1-m cose r-+m 

7 (4.3) i eiw(t--T/c) ei(fx + ka) A 1 
q l - m  C O S ~ ,  

-7 

where A is given by (2.18) and 

rl = (rz+ u2 + 2ur cos e)t, 

a + r  cos8 
cos8 - - (r2+a2+2ar cos8):' 

The coordinate system is shown in figure 8. 

4.2. The energetics of the motion 
For -a < x < 0 the normal surface velocity is given by 

ei(wt-kz) , 

and the time-averaged intensity on the surface is 
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which gives the total power output of the surface as 

113 

djs = ap0 v2w J:a dz s,"'" { cos kqJo (s q )  + sin kqNo 

{ cos kqJo (: q )  + sin kqNo 

+ ap0 v20 Joa { cos kqJo (: q )  + sin kqNo 

= ipo v2w 
-a 

p V 2 W  lCa -0- - 2k k I. cos[Jo(mf;) (ka-6) '6' 

When r % a, 
rl - r+a cos8, cos8 N cos8,. 

and the far-field pressure can be written as 

This field has intensity - 
1 - "2 A2 

I=P,,,=- (1 - cos (ka( 1 - m cos e) ) ) ,  (4.11) 
poc pocr (1-m COS8)Z 

so that the total power radiated outwards to infinity is 

do. 
(1-cos(ka(1--m cos8))) 

2k2n Jon (1 --m cos qz (4.12) 

The equivalence of djs, and @= can be verified by replacing Jo(m[) in (4 .Q using the 
iden ti ty  ; 

I rn 
Jo(rn5) = J cos (m[ cos 0)  do. 

0 

Then 

(4.13) 

dj, - - Po - V2" jOka cos t( ka - [) d[ Î  cos (m[ cos 0 )  dB 
2k2n 0 

= pe 6 d8 loka (ka- f ; )  (cos [( 1 + m cos 8) + cos f;( Z- m cos 8)) d[ 
4k2n 

cos(ka(1-m case))) (1-cos(ka(1--m cos8))) 
( I - ~  cose)2 

-pov2"J~d${(1- 4k2n ( l + m  cos8)2 + 

d8 
(1-cos(ka( l -m~0~8)) )  

(1 - m cos 8)z 

= q. (4.14) 

The asymptotic form as m tends to zero is independent of m as can be seen from 
(4.8) with Jo(m[) set equal to unity: 

2 

OS - - "(1-coska). 
m+o 2k2 

(4.15) 

When ka is small (4.12) is the more useful expression. 
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m = 0.8 

FIGURE 9. A representation of the energy radiated by the strip as a function of both 
Mach number m, and ka. 

Using the fact that 

(1-cos(ku(1-m cose ) ) )  = - Oo - (-1)n(ka)2"(l-m cos8)2n, (4.16) 
n-1 (2n)! 

(4.17) 

Gradshteyn & Ryzhik (1980, p. 382, $3.661(3)), give the identity 

where Pn are Legendre's Polynomials, so that to order 

an expression that is also independent of m and the fluid's compressibility. 
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To find a form for QjS in the limit as ka+w the following integrals must be 
considered for large values of ka:  

I, = 6" cos EJo(mE) d5. 

(4.20) 

(4.21) 

These limits can be found simply by integration by parts, and the results are quoted 
from Levine (1980) : 

2m sinka} 
1 kam 

cos ka + 
+ J1 (:a) { -- (1 - me)2 

I ,  N - 
kwco ( r -m2) t  

+ Jo (:a) { :: i- m2) cos ka - m y  

These asymptotic forms give 

(4.24) 

This is actually the energy generated by the two wave 'ends' acting independently, 
each of which, we have shown already, generates an acoustic power, 

Po v26J 1 
4k2 

(4.25) 

as found in the analysis of Ss2.2 and 3.2. The dependence of the energy on ka, and 
m, is shown in figure 9. 

4.3. Conservation of momentum 
The drag on the surface can be evaluated in a similar manner to $82.3 and 3.3. 
In this case 

(4.26) 
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and the drag force over the whole surface is 
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03 k 
f -  w 

D" - --Qs+z 1 Re(ip" e - i ( w t - k z ) ( S ( 2 ) + S ( 2 + a ) ) ~  " -03 

= - - Q s + L  v2 Joku sin f;Jo(mE) dE. 
w 2k 

(4.27) 

Integration by parts of expression (4.8) for Qs, and its substitution into (4.27) gives 

D: = -'% Joku sinE(ka-6) Jl(mE)dE. (4.28) 

The rate at which the 2-momentum is convected out through a distant surface is 

(4.29) 
cos e 

(1-cos(ka(1-m cosO)))d8. 

In  this case the momentum in the distant sound field is equal to the surface drag, 

P+ Df" = 0. (4.30) 
i.e. 

The equality can be established by noting that 

1 (l-cos(ka(1-mcos8))) 

n o  
de, ( l -m cos8) 

Joku sin EJo(mE) dE = - (4.31) 

and by substituting this into (4.27) with expression (4.12) for Qs. 

to zero: 
By expanding J,(m() for small argument we obtain an expression for 0; as m tends 

D" - -0 v2 Joka sinf(ka-5) (+E+O(m2E2)) d[ ' - 2k 
2 2  

N -~ (1 -cos ka-ika sin ka}. 
m+o 2k 

(4.32) 

The surface drag is essentially due to  the fluid's compressibility and originates in 

To find an expression for D, when ka is small, (4.29) is used: 1 - cos (ka( 1 -m cos 6)) 
the fore and aft beams of the sound wave caused by convective source motion. 

is expanded as a power series in ka( 1 - m cos O ) ,  to give 

(4.33) 

where 
ru  

Il = 0, so that the lowest-order terms are ( k ~ ) ~ .  To fourth order in ka therefore 

(4.35) 
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FIGURE 10. A representation of the drag on the surface as a function of both the 
Mach number m, and ka. 
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m = 0.8 

When ka is very large, the asymptotic form of OS is given by (4.24), which can be 
placed in (4.27) along with the approximation 

1 6" sin [Jo(m[) dg 

(4.36) 
Then 

pov2 1 p0v2 1 -- 0; - - 
2k (1-m2)t 2k (1-m2)r ka+w 

po v2 m( 1 + m2) 
2k (1-m2)2 

+- 
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FIQIJRE 11. This shows the drag on the surface (normalized by povue/2k)  for m = 0.1 as a 
function of the number of wavelengths present in the strip. 

As (o/c) a = mka+ m , D ;  tends to 

pov2 m2 -- 
2k (l-ma)!'  

(4.38) 

which is the sum of the drag forces on two independent wave 'ends', found in $52.3 
and 3.3. Figure 10 shows the drag on the surface as a function of ka and m. 

As the strip becomes very wide the interaction between the ends becomes less, until 
eventually in the limit as ku becomes much larger than l / m  they are no longer 
coupled, and behave independently. 

It is interesting to note that the drag on the surface can act both in the same 
direction, and the opposite direction to that in which the surface wave is travelling. 
This effect occurs only at small Mach numbers and the thrust is seen as a positive 
drag force in figure 11. From (4.32), which applies for small values of m, the condition 
for no drag can be shown to be 

tanika = ika, or ka = 2nx, n an integer. (4.39) 

From (4.15), when ku = 2nx, then d5s = 0 also. Thus at vanishing Mach number the 
surface motion radiates no energy, nor any momentum. Only a near-field disturbance 
is apparent. 

5. The fluid-loaded membrane 
The previous sections deal with the idealized model of a surface on which the 

motion is exactly prescribed. In real surface vibration problems there is a dependence 
of the surface motion on the sound field, and this complicates the analysis consider- 
ably, especially when there is an edge present. Davies (1974) studied the motion of 
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a semi-infinite fluid-loaded membrane, and an asymptotic form of his results can be 
obtained directly from our analysis. 

Davies considered a membrane under tension lying in the region x < 0, the end 
of the membrane being fixed at z = 0, with a rigid baffle in the region x > 0. The 
membrane is fluid loaded, and Davies calculated the reflection coefficient of surface 
waves incident on the edge, and the sound energy radiated by the wave-edge 
interaction. 

If the membrane is lightly loaded, and the wave speed for the unloaded membrane 
very slow, it can be expected that while there is some energy radiated as sound, it 
is insignificant when compared to the energy in the membrane itself. The wave 
reflected at the edge must therefore be equal and opposite to the incident wave. From 
the analysis of $82 and 3 it can be shown by superimposing the incident and outgoing 
surface waves of equal amplitude that there is a cylindrical wave of twice the 
amplitude of (2.22) centred on the edge. This radiates energy to the far field at a rate 

which is in agreement with Davies ($VI, (i)). 
Again for a lightly fluid-loaded membrane, if the free membrane wave speed is 

highly supersonic, then the incident waves, in the fluid-loaded case, can be expected 
to be just subsonic. The actual speed can be found by considering the equation of 
motion for a fluid-loaded membrane 

where p(x ,  y, t )  satisfies the wave equation, and there is the additional condition of 
continuity of displacement at the boundary between fluid and membrane. 

The dispersion relation for a steady harmonic wave travelling on the boundary is 

(5.3) 

where y = (1 - m2)t, m being the phase speed on the membrane divided by the sound 
speed, r = (T/uc2)t, the ratio of the free membrane wave speed to that of sound, and 
p = uw/po c the fluid-loading parameter. 

When r2 9 1, and p B 1, then if m - 1, (5.3) can be approximated to give 

which is a very small quantity, confirming that the speed of the surface wave is very 
close indeed to, but less than, that of sound. 

A wave which is only just subsonic, and which is incident on an edge induces the 
beaming effect that we described in $2.1 (see figure 2). Very little of this energy is 
reflected and Davies ($VI, (iii)) calculates that the radiated power is then 

pov2 1 0 

4k y8 k’ (5.5) 

which agrees exactly with our result (2.26). 
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6. Conclusion 
An evanescent surface wave transports energy along the surface. If the wave is 

incident on an edge, its energy is scattered into sound. In the far field the sound is 
a centred cylindrical wave, decaying as r-k. Its amplitude has a directional dependence 
(1 - m cos 0)-l, r and 0 being the polar coordinates centred on the edge, and m being 
the ratio of the surface phase speed to the sound speed. All of the energy which is 
travelling in the evanescent wave is transferred to the cylindrical sound wave; the 
surface is purely passive and does no work on the fluid. 

A mean force is exerted on the fluid by the surface, and acts in the direction opposite 
to that in which the evanescent wave is travelling. This force balances the acoustic 
Reynolds stress, and mean pressure gradient induced as a nonlinear consequence of 
the surface wave. 

On the other hand if a subsonic surface wave is driven away from an edge, despite 
there being an evanescent wave, and a cylindrical wave as before, the energetics and 
the form drag take on a different character. 

The same amount of energy is radiated as sound but in this case the surface does 
work on the fluid to provide the energy requirement of both the evanescent and the 
sound fields. 

The surface now exerts a force in the same direction as the evanescent wave is 
moving, and as before this is balanced by forces arising in the radiation stress and 
mean pressure gradient. 

These two problems are combined to describe a surface wave driven across a finite 
strip. 

Figures 9 and 10 show the energy radiated, and the drag on the strip respectively. 
As the strip width tends to infinity the system becomes the simple superposition of 
the two earlier cases. When the strip is an integral number of wavelengths wide, and 
the Mach number is small, the energy radiated and the drag on the surface are both 
of order of the Mach number. 

By using these basic ideas, the more complex problem of a semi-infinite fluid-loaded 
membrane can be understood in some limiting cases. First, if the speed of a wave 
on the unloaded membrane is very subsonic, then the energy in the surface near field 
is very small, while that in the surface is relatively large. Because the fluid loading 
is light, any wave travelling along the membrane, incident on the edge will be reflected 
with almost an equal and opposite amplitude. From the first two cases studied in 
this paper, the energy radiated by such a system is easily calculated as (5.1). Secondly, 
if the membrane ' in vacuo ' free wave speed is highly supersonic then the fluid-loaded 
wave travels at a speed only just less than that of sound. The energy in the near field 
is consequently very large, and when it is incident on the edge, none of it is reflected 
back. Both these cases conform with the exact calculations of Davies (1974). 
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